BIM-based seismic vulnerability assessment using the Equivalent Frame Method

Expeditious modelling and analysis framework of existing URM-RC buildings

Gonçalo Correia Lopes (U. Aveiro)

TÉCNICO LISBOA

ICIST

ZNE<

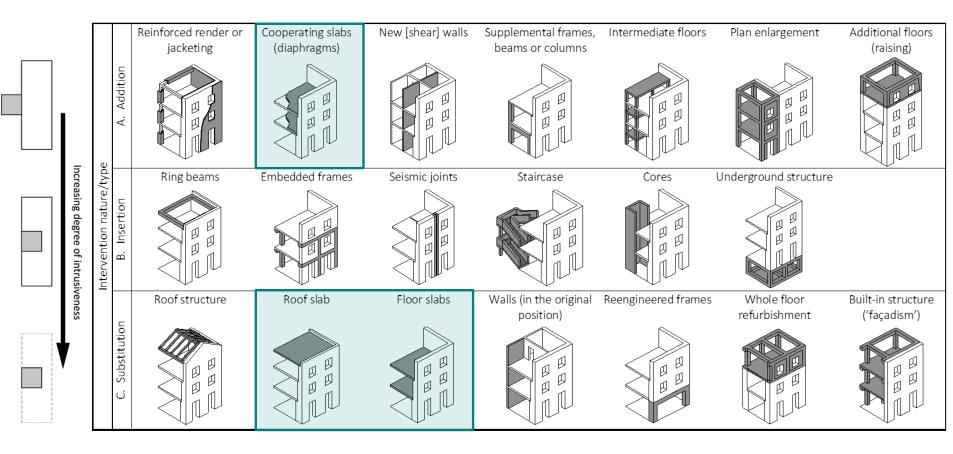
U. PORTO

Supervision: Romeu Vicente (U. Aveiro), Miguel Azenha (U. Minho), Tiago Miguel Ferreira (UWE Bristol)

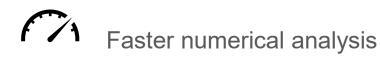
de aveiro

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-4 November 2022

Presentation summary


- I. Motivation and Methodology Mixed URM-RC building typologies
- II. Expeditious modelling and analysis framework Non-linear Static (Pushover) Analysis
- III. Case-study URM-RC buildings Practical examples: From BIM to FEM/EFM

I. Motivation and Methodology


Mixed URM-RC building typologies

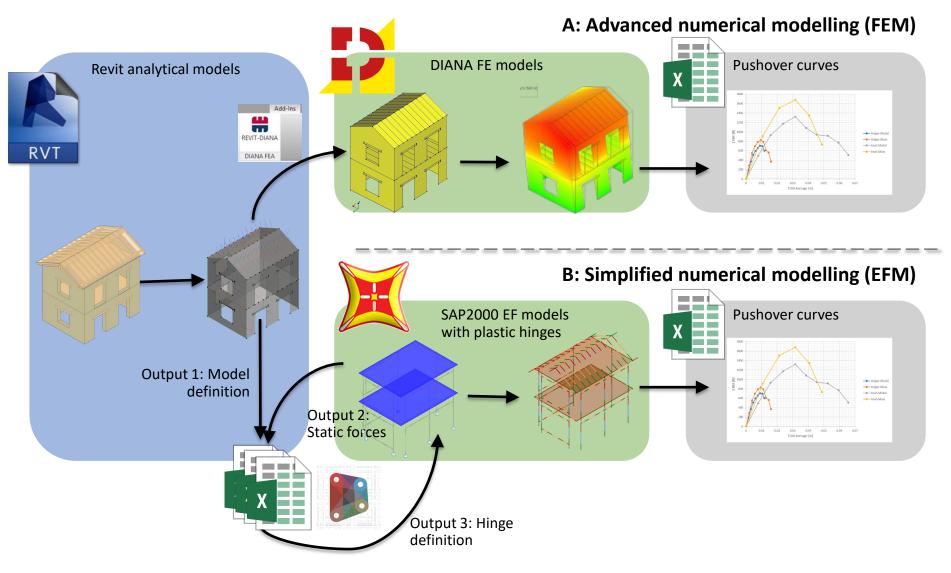
3rd EUROPEAN CONFERENCE ON EARTHQUAKE ENGINEERING & SEISMOLOGY. BUCHAREST, ROMANIA,

Mixed URM-RC building typologies

Goals

Robustness of the 3D models

Automation of processes



Convenience in engineering practice

Freedom of choice

Validation strategy of the seismic assessment methodology

Data iterative flow (Revit-Dynamo-Excel-SAP2000)

•

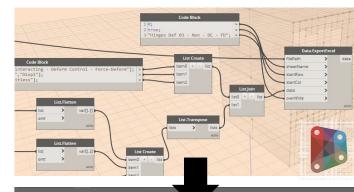
Tables I: Model definition

- Joint Coordinates
- Connectivity Frame •
- Frame Section Assignments
- Frame Props 01 -General
- Joint Restraint
 Assignments
- Connectivity Area
- Frame Local Axes 1

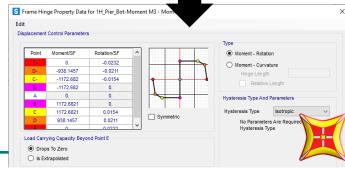
 Typical
- Frame Offset (Length) Assigns
- Frame Insertion Point* Assigns
- MatProp 01 General*
- MatProp 02 Basic
 Mech Props
- Area Section Assignments
- Area Section Properties
- Area Section Property Layers
- Area Auto Mesh

Assignments

.


- Load Case Definitions
 - Load Pattern Definitions
- Auto Seismic -
- Eurocode8 2004
- Case Modal 1 -General
- Case Static 1 -Load Assigns
 - Case Static 2 NL Load App
 - Case Static 4 NL Parameters
 - Case Static 7 Add Con Disps
 - Program Control

Tables II: Static forces


- Base Reactions
- Element Forces Frames
- Program Control

Tables III: Hinge definition

- Hinges Def 03 Non - DC – FD
- Hinges Def 05 Non
 Fcontrol
- Hinges Def 02 Non - DC – Gen
- Hinge Ass 02 User
 Prop
 - Hinge Ass 09 Hinge Overwrites
 - Program Control

	A	В		D	E	F	G
1	TABLE: Hinges Def 03 - Noninter	acting - De	form contr	ol - Force-	Deform		
2	HingeName	FDPoint	Force	Displ			
3	Text	Text	Unitless	Unitless			
4	1H_Pier_Top-Moment M3	-E	0	-0.02324		1500	
5	1H_Pier_Top-Moment M3	-D	-938.146	-0.02113		1000	_
6	1H_Pier_Top-Moment M3	-C	-1172.68	-0.01536			
7	1H_Pier_Top-Moment M3	-В	-1172.68	-0.00031		500	
8	1H_Pier_Top-Moment M3	Α	0	0		• 0 •	-
9	1H_Pier_Top-Moment M3	В	1172.682	0.000306	-0.04	-0.02 0	0.02
10	1H_Pier_Top-Moment M3	С	1172.682	0.015364		-1000	
11	1H_Pier_Top-Moment M3	D	938.1457	0.021126		-1500	
12	1H_Pier_Top-Moment M3	E	0	0.023238		-1500	
13	2H_Pier_Top-Moment M3	-E	0	-0.02402			
14	2H_Pier_Top-Moment M3	-D	375.7343	-0.02184			
15	2H_Pier_Top-Moment M3	-C	469.6679	-0.01588			
16	2H_Pier_Top-Moment M3	-B	469.6679	-0.01074			
17	2H_Pier_Top-Moment M3	Α	0	0			
18	2H_Pier_Top-Moment M3	В	-469.668	0.010737			
19	2H_Pier_Top-Moment M3	С	-469.668	0.015884			
20	2H_Pier_Top-Moment M3	D	-375.734	0.021841			
21	2H_Pier_Top-Moment M3	E	0	0.024025		Х	
22	3H_Pier_Top-Moment M3	-E	0	-0.02381			
23	3H_Pier_Top-Moment M3	-D	2 2	-0.02164			

II. Expeditious modelling and analysis framework Non-linear Static (Pushover) Analysis

3rd EUROPEAN CONFERENCE ON EARTHQUAKE ENGINEERING & SEISMOLOGY. BUCHAREST, ROMANIA,

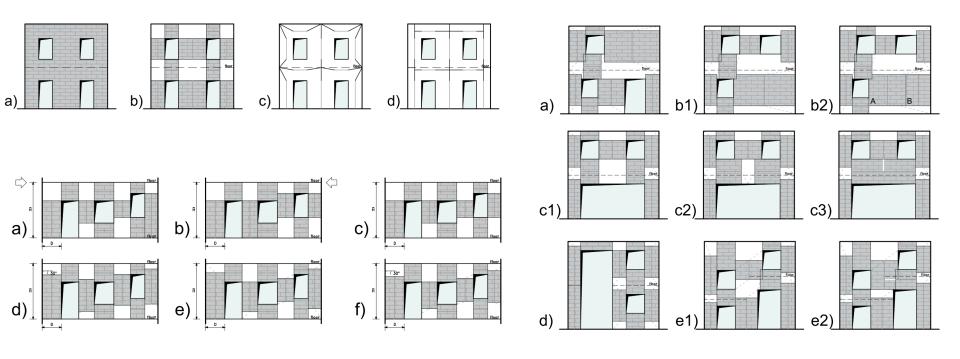
Purpose and necessary steps

Purpose:

- Determination of building capacity
- Description of building performance under horizontal actions

Steps:

- Identification of structural components (piers, spandrels, rigid nodes)
- Creation of suitable structural model (incl. boundary conditions, gravity loads, etc.)
- Assignment of nonlinear behaviour properties/descriptions

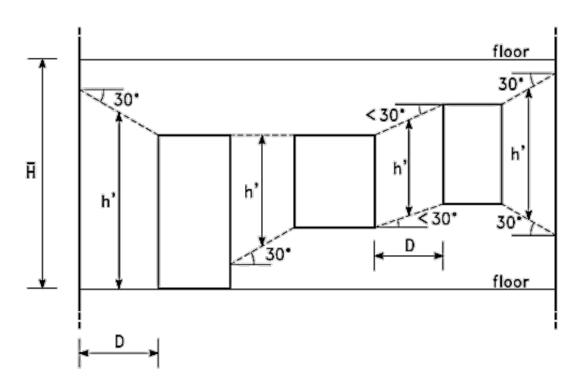


 Definition of lateral load pattern or horizontal action (modal, uniform, EC8)

1. Definition of geometry

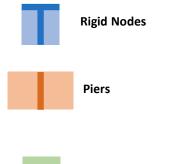
Multiple criteria for

- macroelements' discretisation
- calculating the deformable lengths of piers
- coping with irregular opening layouts



1. Definition of geometry

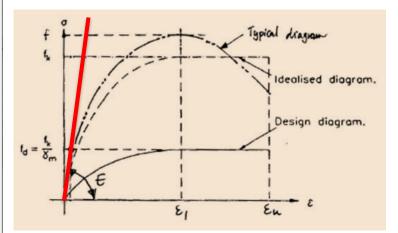
Piers' effective (deformable) height

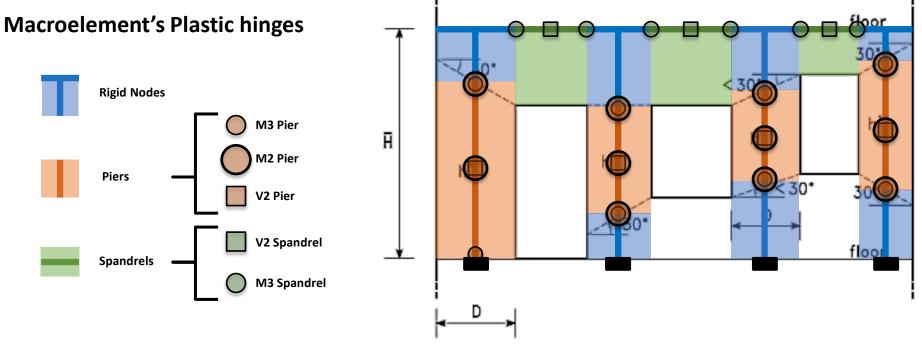

$$H_{eff} = h' + \frac{1}{3} \cdot D \cdot \frac{(\overline{H} - h')}{h'}$$

(Dolce, 1989)

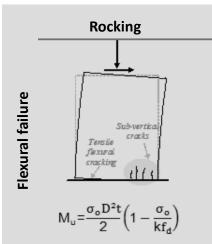


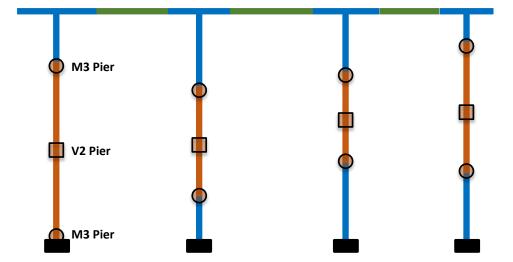
1. Definition of geometry

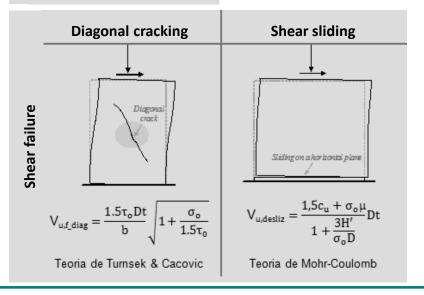

Spandrels

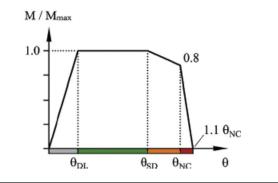


2. Definition of materials

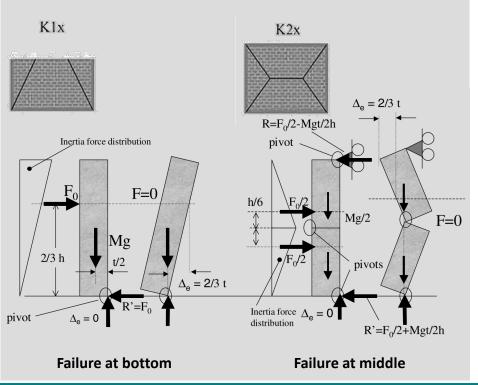

aterial	Name		Material Type		
Masonry			Other		
vetere	estanceia Traca		arameters		
lysteresis Type		Drucker-Prager Para	0.		
Takeda	a v	Friction Angle		KN, m, C 🗸 🗸	
		Dilatational Angle	0.		
tress-	Strain Curve Defin	ition Options	Acceptance Criteria Strains		
) Par	rametric		Tension	Compression	
			IO 0.01	-5.000E-03	
Convert To User Defined User Defined			LS 0.02	-0.01	
			CP 0.05	-0.02	
			Ignore Tension Acceptance Criteria		
C+	ress-Strain Curve	Data			
				3	
Numbe	er of Points in Stree	ss-Strain Curve		3	
	Strain	Stress	Point ID		
		-1.			
1	-1.111E-06				
1 2	-1.111E-06 0.	0.	A		

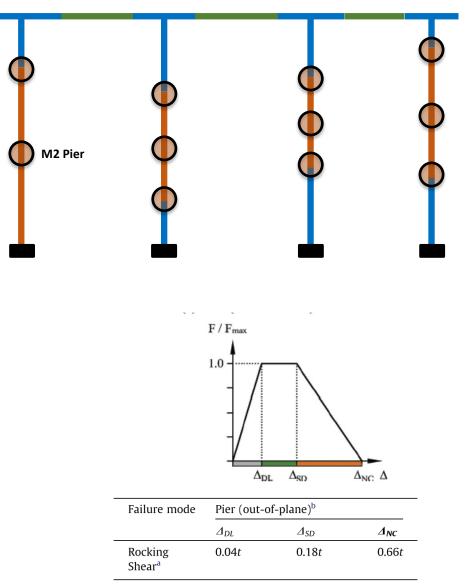

Each element can be modelled with **linear-elastic materials**, and the nonlinearity of the elements is translated through **concentrated / lumped inelasticity**



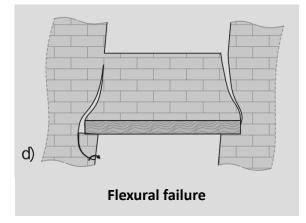


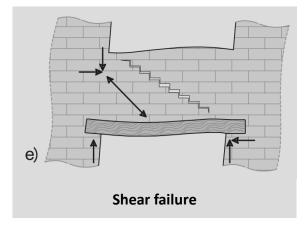
Piers' in plane mechanisms

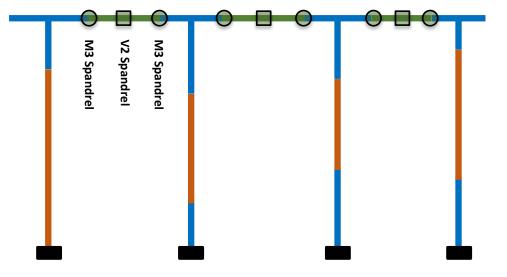


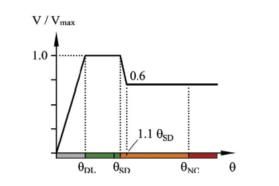


Failure mode	Pier (in-plane)			
	θ_{DL}	θ_{SD}	θ_{NC}	
Rocking Shear ^a	$ heta_{cr} \\ heta_{cr}$	$0.008 \alpha_V$ 0.004	0.011α _V 0.005	


Piers' out-of-plane mechanisms


	Uniform	Triangular		
K1x top hinge	$3\Box \dot{B}\Box \Box \delta \Box - \Delta_N' + \Box c \frac{\Box}{2} - \Delta_N b$	$\square \dot{B} \square \square \& \neg \Delta_N' + \square , \frac{\square}{2} \neg \Delta_N, \dot{D}$		
F B-	3□ - 2□ ·tan&⊡	□ - □ ·tan&□		
K1x bottom	$3\Box, \Box_{\Box\Box}\& - \Delta_N' + \Box_{\frac{D}{2}}$	$\Box \overline{\mathbf{y}} 2 \Box_{\Box \Box} \mathbf{x} \overline{\mathbf{z}} - \Delta_N' + \Box_{\overline{\mathbf{y}}}$		
hinge	3□ - 4□ ·tan&⊡	2□ - 3□ ·tan&1		
K2x middle	$3\Box, \Box_{aa}\& - \Delta_{N}' + \Box_{\overline{4}}$	$\Box \bar{y} 4 \Box_{\Box \Box} \& - \Delta_N' + \Box \Box \bar{y}$		
hinge	3□ - □ ·tan&□	2&2□ - □ ·tan&1'		



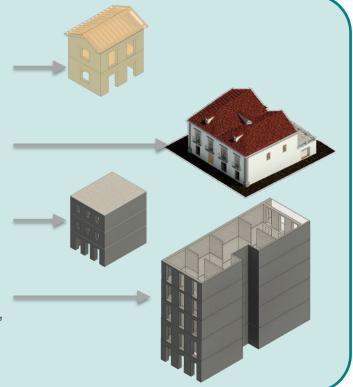


Spandrels' mechanisms

Failure mode	Spandrel			
	θ_{DL}	θ_{SD}	θ_{NC}	
Rocking Shear ^a	0.002 0.001	$0.008 l_{sp}/h_{sp}$ 0.004	0.015 0.02	

III. Case-study URM-RC buildings Practical examples: From BIM to FEM/EFM

3rd EUROPEAN CONFERENCE ON EARTHQUAKE ENGINEERING & SEISMOLOGY. BUCHAREST, ROMANIA.

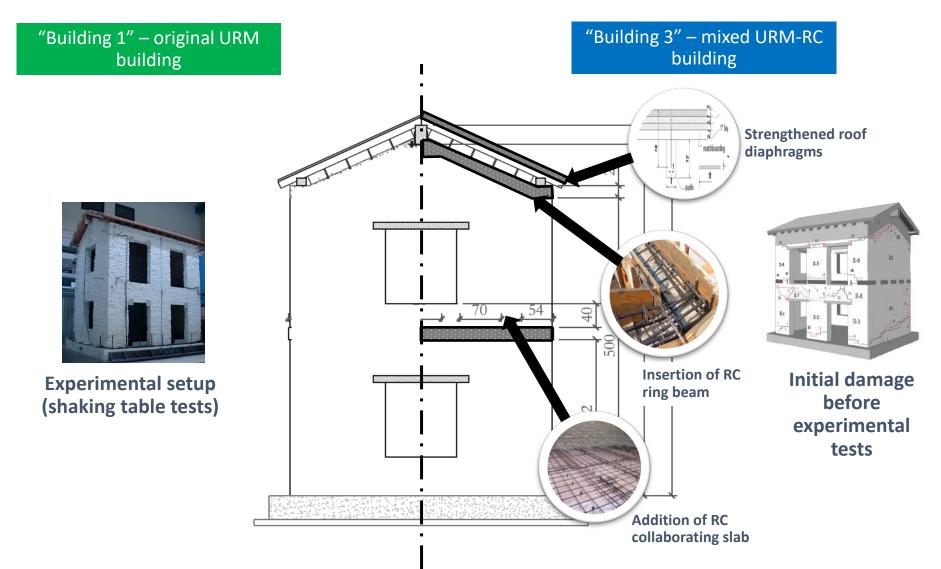

Validation strategy of the seismic assessment methodology

Comparison amongst different types of:

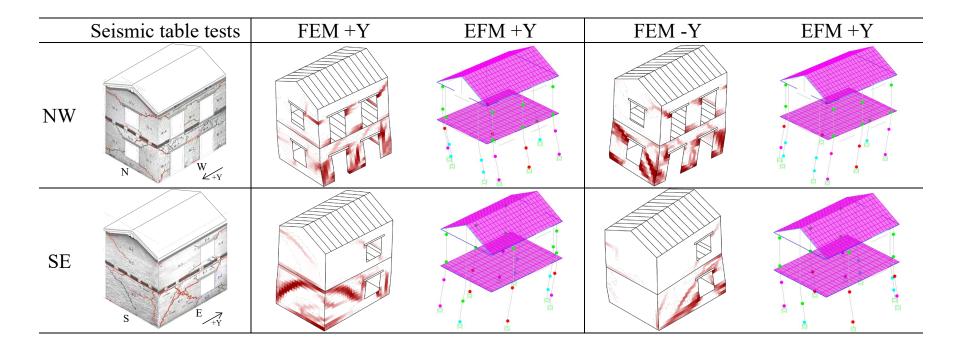
- Building geometries (pier H/D ratio, opening ratio, number of storeys)
- Material properties

Case-study URM-RC buildings

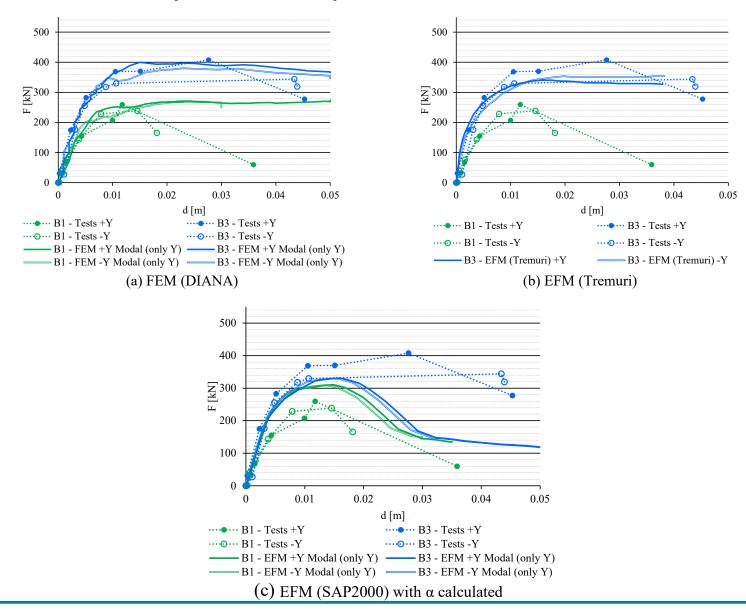
- EUCENTRE buildings Model from experimental seismic table test campaign (unreinforced and reinforced typologies)
- 2 storey building Model from laser scanning survey + ambient vibration testing
- 3 storey building Model based on statistical study of the Portuguese building stock (Lovon, H., et al. 2021)
- 5 storey building Model follow the minimum dimensions recommended by the Health Regulation for Buildings (RSEU, 1903)

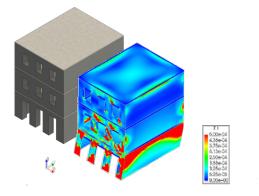


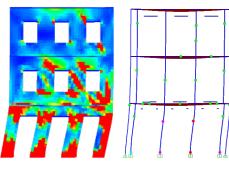
Validation strategy of the seismic assessment methodology

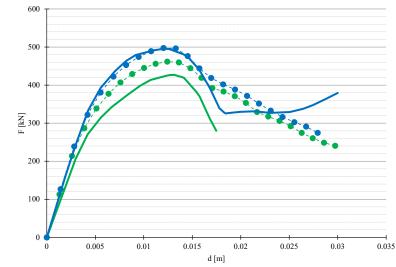

Comparison amongst different types of:

- Building geometries (pier H/D ratio, opening ratio, number of storeys)
- Material properties
- **Analysis methods** (experimental and numerical), based on:
 - Damage observation (damage patterns, failure modes and severity of cracking)
 - Modal analysis (modal shapes, frequencies)
 - Pushover analysis (target displacement, stiffness, capacity)

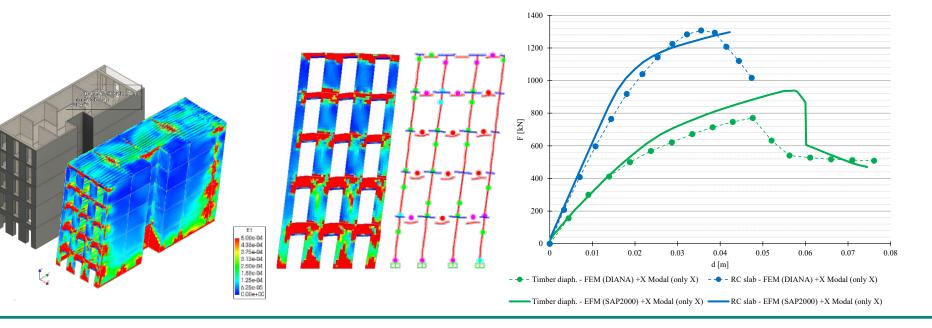

Case-study URM-RC buildings


Observed damage patterns and failure mechanisms




Numerical vs experimental pushover results

Case-study URM-RC buildings



^{- -} Timber diaph. - FEM (DIANA) +X Modal (only X) - - - RC slab - FEM (DIANA) +X Modal (only X)

Timber diaph. - EFM (SAP2000) +X Modal (only X) - RC slab - EFM (SAP2000) +X Modal (only X)

Contributions

Speed of the analysis: EFM vs FEM

Robustness of the model creation plug-in

Able to handle irregular opening layouts and complex 3D structures

Automation and simplification of processes

Modelling, analysis, and results

Convenience in engineering practice

- Easy to be implemented in practice-oriented commercial software
- Consistent with the recommendations of several seismic codes (namely the EC8-Part 3)
- Integrated multidisciplinary workflow:

Architect – Engineer – Contractor – Client – User

Freedom of choice

- Not dependent on specific macroelement-based analysis software
- Not dependent on software version compatibility

Published references

- G. Correia Lopes, N. Mendes, R. Vicente, T.M. Ferreira, M. Azenha, Seismic performance assessment of existing URM-RC buildings: a BIM-based methodology, in: 3rd Eur. Conf. Earthq. Eng. Seismol., Bucharest, Romania, 2022.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, Intervened URM buildings with RC elements: typological characterisation and associated challenges, Bull. Earthq. Eng. 17 (2019) 4987–5019. doi:10.1007/s10518-019-00651-y.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, H. Rodrigues, BIMbased methodology for the seismic performance assessment of existing buildings, Port. J. Struct. Eng. III (2020) 45–54.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, J. Estêvão, Displacement-based seismic performance evaluation and vulnerability assessment of buildings: The N2 method revisited, Structures. 24 (2020) 41–49. doi:10.1016/J.ISTRUC.2019.12.028.
- G. Correia Lopes, R. Vicente, T.M. Ferreira, M. Azenha, H. Rodrigues, BIMbased Methodology for the Seismic Performance Assessment of Existing Buildings, in: 4° Encontro Conserv. E Reabil. Edifícios, LNEC, Lisbon, 2020: pp. 785–788.
- G. Correia Lopes, N. Mendes, R. Vicente, T.M. Ferreira, M. Azenha, Numerical simulations of derived URM-RC buildings: Assessment of strengthening interventions with RC, J. Build. Eng. 40 (2021) 102304. doi:10.1016/j.jobe.2021.102304.

Gonçalo Correia Lopes PhD candidate in Civil Engineering email: <u>gclopes@ua.pt</u>

Thesis title: A BIM-based methodology for the seismic performance assessment of existing URM-RC buildings

Acknowledgements are due to the PhD grant PD/BD/135201/2017 provided by Foundation for Science and Technology (FCT) within the scope of the Doctoral Programme InfraRisk- (Analysis and Mitigation of Risks in Infrastructures) and to University of Aveiro, FCT/MEC for the financial support to the research Unit RISCO – Aveiro Research Centre of Risks and Sustainability in Construction – (FCT/UID/ECI/04450/2013)